Step of Proof: decidable-filter
11,40
postcript
pdf
Inference at
*
2
2
I
of proof for Lemma
decidable-filter
:
.....antecedent..... NILNIL
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
P
:({
x
:
T
| (
x
v
)}
).
5.
(
x
v
. Dec(
P
(
x
)))
(
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
)))))
6.
P
: {
x
:
T
| (
x
[
u
/
v
])}
7.
x
[
u
/
v
]. Dec(
P
(
x
))
x
v
. Dec(
P
(
x
))
latex
by (((if (((first_nat 3:n)) = 0) then (Repeat (ParallelOp ( -1)
)) else (RepeatFor (first_nat 3:n
) (ParallelOp ( -1)
)))
)
CollapseTHEN (((RWO "cons_member" 0)
CollapseTHEN (MaAuto
))
))
C
latex
C
.
Definitions
[
car
/
cdr
]
,
{
x
:
A
|
B
(
x
)}
,
x
L
.
P
(
x
)
,
P
&
Q
,
a
<
b
,
Dec(
P
)
,
A
,
f
(
a
)
,
L1
L2
,
P
Q
,
increasing(
f
;
k
)
,
x
(
s
)
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
left
+
right
,
P
Q
,
{
T
}
,
(
x
l
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
type
List
,
Type
,
t
T
,
,
s
=
t
Lemmas
decidable
wf
,
l
member
wf
,
cons
member
origin